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1.0 Introduction 
 
Highly complex integrated circuit systems are generally composed of multiple components which 
may be modules, or packages, or areas on a large chip.  A system synthesis tool allows a 
designer to synthesize designs for different types of system implementations from a single system 
specification.  A design life for an architecture may involve multiple instantiations using different 
technologies, as shown in Figure 1. The various instantiations require different design cycles, 
and may include boards of Field Programmable Gate Arrays (FPGAs) and Programmable Logic 
Devices (PLDs) for prototyping, a low cost initial design using smaller Application Specific 
Integrated Circuits (ASICs) on a board, and a final high performance implementation on a Multi-
Chip Module (MCM) or single chip.  System synthesis tools allow a designer to synthesize each 
different stage of a system's life cycle from early prototype to final high volume design, and 
beyond for model year updates.  Each of these of implementations may require a different 
physical partitioning of the system's behavior, and consequently a different structural 
implementation of each partition.  In addition to supporting the different stages of a system's life 
cycle, system synthesis allows design space exploration of cost/performance trade-offs.  
DASYS' new tool, called Dasynth, supports the interactive partitioning of a design's behavior 
across multiple physical partitions and the interactive or automatic synthesis of those partitions 
and their interconnect to a target technology. 
 
 
 

 
 
 

Figure 1. System Synthesis 
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Dasynth was developed to demonstrate an approach to system synthesis based on architectural 
partitioning.  In this approach, a system is described using a behavioral system specification, 
which is then partitioned and synthesized to create a structural register transfer level (RTL) 
description for each behavioral partition. 
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2.0 System Synthesis Using Architectural Partitioning 
 
Architectural partitioning operates on a behavioral description, partitioning the behavior onto 
physical packages before high level synthesis (HLS) is begun.  This early partitioning is 
imperative since it allows early introduction of packaging information into the design process, 
ensuring that design constraints can be met.  Early partitioning also provides an early 
decomposition of the synthesis problem.  Each partition can be synthesized separately reducing 
the time needed to synthesize the system.  This brings about shorter design times for rapid 
prototyping or time for each module to be better optimized for high performance applications. 
 
DASYS' approach employs three major new concepts: abstract behavioral specifications, 
architectural partitioning, and high level synthesis.  Each will be described in this section. 
 
2.1 Behavioral Specification 
 
A behavioral system specification is composed of two major parts, a description of the system's 
behavior and system constraints. 
 
A system's behavior specifies the actions which must be accomplished to perform the system's 
function.  The system's behavior can span a range of levels of abstraction.  The lowest level of 
behavioral abstraction is a cycle-by-cycle behavior.  In this case the system's state sequence is 
defined.  However the description of each state's behavior does not imply specific hardware 
such as Arithmetic Logic Units (ALUs), registers or busses.  The most abstract behavioral 
description is an algorithmic behavior wherein the system's state sequence is not specified. 
 
The Hardware Description Language (HDL) fragments shown in Figure 2 demonstrate these two 
extremes.  Both describe a matrix cross product.  In either of the cases shown in Figure 2, a 
variable in the HDL (e.g., crossx or P1) does not imply a specific register, nor do the operations 
* or - imply a specific multiplier or subtracter.  During system synthesis the exact register and 
functional units for these constructs will be defined.  The difference between the two 
descriptions is that in part b of the figure, clock edges are defined, specifying that the operations 
between the clock edges must be executed during the given clock cycle. 
 
In addition to a system's behavior, a system specification defines the system's design constraints.  
The most common types of constraints are clock period, timing, area, and power. 
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a.) Algorithmic Behavior                     b.) Cycle-By Cycle-Behavior 

Constraints: Time = 280ns                      Constraint: clock = 25Mz 
crossx = A[l]*B[3] - A[3]*B[2] at posedge(clock) at posedge(clock) 
crossy = A[3]*B[l] - A[l]*B[3] Pl = A[I]*B[3] crossy = Pl - P2 
crossz = A[l]*B[2] - A[2]*B[l] at posedge(clock) Pl = A[l]*B[2] 
 P2 = A[3]*N[2] at posedge(clock) 
 at posedge(clock) P2 = A[2]*B[l] 
 crossx = Pl - P2 at posedge(clock) 
 pl = A[3]*B[2] crossx = Pl - P2 
 at posedge(clock) 
 P2 = A[l]B[3] 
 
 
 

Figure 2. Example Behavioral Specification 
 
 
Timing constraints specify the time between any two points in the systems behavior.  Timing 
constraints might be defined in terms of clock cycles or absolute time.  For example, two 
operators may be constrained to be exactly one cycle apart or 15ns apart. 
 
Area constraints limit the amount of board or chip area which maybe used by the system.  This 
constrains the resources which may be used to implement the systems behavior.  Area constraints 
can also be defined indirectly in terms of allowed resources.  For example instead of providing a 
board area, a designer may specify a number of specific packages.  Instead of specifying a chip's 
area, the designer may specify a number of specific components that may be used. 
 
Power constraints specify the amount of power which may be consumed by a system or how the 
power dissipation must be distributed across the design. 
 
 
2.2 Architectural Partitioning 
 
Architectural partitioning is engaged before synthesis, operating directly on the behavioral 
specification.  Architectural partitioning determines the number of chips or areas on a chip to 
used for the design and the subset of the behavior that will be implemented in each partition. 
 
In current design synthesis methodologies, partitioning is left to the final design stages (e.g., gate 
level).  However, this may result in irreconcilable constraints; structural implementation 
decisions made without regard to partitioning issues may result in a design that cannot be 
partitioned according to requirements.  Consequently, partitioning should be one of the first 
stages in the design process, so that later synthesis stages can take advantage of partitioning 
information and so that desirable partitioning moves are not blocked. 
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Behavioral partitioning requires criteria that are different from those used for structural or 
physical partitioning.  For any partitioning, the goal is to optimize certain physical criteria or 
meet physical constraints, but in behavioral partitioning, without the knowledge of physical 
characteristics, these criteria and constraints can not be directly measured.  Instead, behavioral 
criteria are used which strongly influence our ability to meet the physical criteria.  The following 
is a partial list of behavioral partitioning criteria and how they effect the design's physical 
implementation. 
 
• Minimizing the communications between partitions minimizes the need for pins and 

interconnect between partitions.  This maximizes the chance of the HLS tools to meet pin 
constraints or board interconnect constraints. 

 
• Minimizing the number of data transfers between partitions that lie on the design's critical path 

minimizes performance degradation due to off chip data transfers. 
 
• Maximizing the locality of control within partitions minimizes the synchronization that must be 

performed between chips, and minimizes the size of the controller on each chip. 
 
• Maximizing the similarity of the functionality within partitions maximizes resource sharing and 

therefore minimizes the size of chips needed to implement each partition. 
 
 
2.3 High Level Synthesis 
 
After the system's behavior has been partitioned, high level synthesis tools are used to create an 
RTL implementation of the architecture.  This RTL representation must be suitable for input to 
current logic synthesis tools, data path compilers, or for use with RTL cell libraries.  High Level 
Synthesis performs two major tasks: it creates the a datapath that implements the desired 
behavior and it defines a state machine to control the datapath.  Synthesis of a partitioned design 
can take advantage of the partitioning information if the tools know about resource requirements 
and the difference between inter and intra chip interconnect and pin limitations. 
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3.0 Dasynth 
 
Dasynth is a system synthesis tool being developed by DASYS, which takes behavioral system 
specifications and synthesizes Register Transfer Level (RTL) structural specifications suitable 
for current synthesis tools.  Dasynth performs two major design steps, as shown in Figure 3. First 
it creates a high level partitioning (or floor plan) for the design before synthesis, and then it 
synthesizes an RTL structural description for each partition as well as the interconnect between 
partitions.  It is important to understand that the tool partitions the behavior before synthesis.  
This early partitioning is imperative, since it allows early introduction of packaging information 
into the design process, ensuring that design constraints can be met.  Early partitioning also 
provides an early decomposition of the synthesis problem.  Each partition can be synthesized 
separately reducing the time needed to synthesize the system allowing shorter design times for 
rapid prototyping or time for each module to be better optimized for high performance 
applications. 
 
 
 

.  
 
 

Figure 3. Dasynth Design Flow  
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3.1 Dasynth Input and Output 
 
Figure 4 shows the input/output requirements for Dasynth.  Dasynth takes four types of inputs: a 
system's behavior, design constraints, an RTL component library, and an opcode table.  It 
produces an RTL structure of the synthesized design.  Each of the input and output files is 
described in greater detail below. 
 
 
3.1.1 Behavior 
Dasynth takes as input a description of a system's behavior.  A system's behavior specifies the 
actions that must be accomplished to perform the system's function.  The system's behavior can 
span a range of levels of abstraction.  Dasynth version 0.0 takes as input the most abstract 
behavioral description, an algorithmic behavior, written in the hardware description language, 
VHDL.  In this case the system's state sequence is not specified. 
 

 
 
 

Figure 4. Dasynth Input/Output Description 
 
 
 
3.2 Design Constraints 
 
Dasynth supports three types of design constraints: cycle length, timing constraints, and resource 
constraints.  The cycle length specifies the clock period.  Timing constraints can be placed 
between any two operators in the behavior.  Timing constraints can be defined in terms of clock 
cycles or absolute time.  For example, two operators may be constrained to be exactly one cycle 
apart or 15ns apart.  The types of timing constraints supported are at least n, at most n, exactly n, 
more than n, less than n, and not n, where n is a number of cycles or nanoseconds between the 
constrained events. 
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Resource constraints limit the amount of hardware used in the data path.  Dasynth version 0.0 
allows the user to specify resource constraints in terms of the number of RTL components in each 
partition. 
 
3.2.1 Opcode Table 
 
Dasynth reads a set of files that define an opcode table.  This table defines the legal operations in 
the behavior and assigns a symbolic opcode to each operation.  These opcodes are used to map 
VHDL operations onto components in the RTL library.  The opcode table also allows the user to 
specify additional operations not supported by the language, for example an FFT operator.  To 
define a new operator, the user writes a function describing the new operator and the opcode 
table will map calls to this function into an opcode.  Dasynth treats the new operator like any 
other, meaning it will be partitioned, scheduled and mapped onto cells in the library.  The ability 
to define new operations allows easy integration of conversion functions for packages like 
standard logic in VHDL, as well as the use of off the shelf components such as a FIFO. 
 
 
3.2.2 RTL Component Library 
 
Dasynth employs an RTL component library.  This library contains RTL parts for building the 
design's datapaths.  Such parts include functional units (ALUS, adders, shifters, etc.), registers, 
buffers and muxes.  Current standards or pending standards for writing libraries at this level are 
Xilinx Blox for FPGAS or Synopsis DesignWare.   
 
Each library entry is composed of a simulatable HDL description of a cell plus additional 
information needed for synthesis.  The synthesis information provided by the library includes the 
cell's area, a description of the operations performed by the cell (using the opcodes from the 
opcode table), the ports used by each operator, and a worst case time for each operator. 
 
The library also contains a template for the controller.  This template defines the specific 
requirements of the logic synthesis tool which will be used to synthesize the controller. 
 
 
3.2.3 RTL Structure  
 
Dasynth produces an RTL structural specification of the system.  A structural specification of the 
system is composed of two components: a description of the system's controlling state machine 
and instantiations of RTL library modules which define the data path.  The description of the 
state machine is a case statement format suitable for input to current logic synthesis tools.  Figure 
5 shows an example of the structural specification for the cross product of Figure 2. 
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Figure 5.  Example Structural Description 
 
 
3.3 Dasynth Organization 
 
As shown in Figure 6, Dasynth is comprised of the Graphical User Interface (GUI),  the Synthesis 
Tools, the VHDL Interface, and the Library Manager.  Each of these components is described in 
the following sections. 
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Figure 6. Dasynth Origanization 

 
 
 
3.3.1 GUI 
 
Dasynth's Graphical User Interface provides four views of the design: VHDL, Data/Control 
Graph, RTL Structure, and Partitioning.  The VHDL window displays the VHDL input.  The 
Data/Control Graph window displays a hierarchical description of the design's data and control 
flow.  The RTL structure window shows a schematic of the design's RTL structure.  The 
partitioning window shows graphical representations of design partitions and their relationship 
to each other based on select partitioning criteria. 
 
One of Dasynth's most powerful features is the ability to graphically display the correlation 
between each view of the design.  For example if a designer selects an operator in the HDL 
window, the system can highlight that operator in the state machine view, the RTL cell 
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implementing that operator in the schematic and the partition in the partitioning window.  Another 
example: a designer can select a partition in the partitioning window and see all operators in the 
HDL window or in the control flow graph window which are in the selected partition.  This 
ability to correlate the different design views allows easy understanding of the system's actions 
and the relationship between the behavioral input and structural RTL output. 
 
3.3.2 Synthesis Tools 
 
Dasynth's synthesis tools are: an interactive architectural partitioning tool, an automatic 
scheduler, and a data path allocator.  The partitioning tool allows the designer to partition based 
on a number of criteria, such as data similarity, position on the critical paths, operator similarity, 
and locality of control. 
 
The scheduler defines the state sequence for the design's controller.  The scheduler is constraint 
driven and will seek to maximize performance while meeting both resource and timing 
constraints.  The scheduler supports iterative refinement of the system's state machine definition 
by allowing constraints to be changed and the design or part of the design to be rescheduled.  As 
the design is scheduled the control/data flow view of the design is modified to represent the 
current state sequence. 
 
The hardware allocator creates a new module for each partition.  It allocates ports for each 
module and the interconnect between them.  Within each module, it allocates and connects cells 
from the RTL library for the data path and defines the interconnect to the system's controller. 
 
3.3.3 VHDL Front End 
 
The VHDL front end provides an interface between Compass Design Automations VHDL Tool 
Integration Platform (VTIP), and DASYS' internal data structures.  The interface translates 
between VTIP's VHDL data structures and Dasys internal format.  This includes translating the 
VHDL input into the internal data structures before synthesis, translating the VHDL descriptions 
of library components into the library manager's data structures, and translating intemal data 
structures back to VHDL after synthesis.  VTIP is responsible for analyzing and producing valid 
VHDL. 
 
3.3.4 Library Manager 
 
Dasynth has an independent library manager that provides a uniform functional interface to 
replacable component libraries.  The library manager allows the synthesis tools to use the library 
in a technology-independent way.  This allows the library to be radically changed for new 
technologies with no affect on the rest of the system. 
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4.0 Tool Evaluation 
 
Dasynth has been evaluated internally by DASYS personnel, using multiple small descriptions, and 
externally by Raytheon personnel.  Feedback from Raytheon indicates that the tool, with appropriate 
enhancements (see Section 5.0), would be useful in reducing their current design cycle time by 
approximately 50 percent. 
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5.0 Lessons Learned 
 
This section outlines the major lessons learned during completion of this project.  These 
represent both technical requirements and feedback from designers at Raytheon. 
 
 
5.1 Constraints 
 
When we first began the project we asked designers at Raytheon and elsewhere how they wanted 
to specify design constraints.  Since they knew what data path elements were needed when they 
designed a chip they suggested that resource constraints be in terms of the number of specific 
cells in the data path.  However after trying the tool they decided that specifying such constraints 
for each partition was not desirable.  They preferred the tool determine the resource constraints 
for each partition given the timing constraints.  This was more flexible, allowing easier 
exploration of the design space. 
 
5.2 Scheduling 
 
The above change of view on constraints requires a change in how scheduling is performed.  The 
scheduler was designed to fit a design onto a specified set of data path elements while meeting 
timing constraints.  With the new view of scheduling the scheduler needs to be driven primarily 
by the timing constraints. 
 
5.3 Using RTL Cell Libraries 
 
Dasynth currently requires an RTL cell library for scheduling and allocation.  The final design's 
data path is composed of instantiations from this cell library.  This was a major departure from 
previous high level synthesis systems which allowed almost arbitrary combination of 
functionality into functional units.  Designers at Raytheon suggested that there might be situations 
where the cell library approach is too restrictive.  This might be the case during very early 
design stages where the main task is design space exploration, or in an environment where all 
functional units are hand crafted.  In either of these cases a more general mechanism for choosing 
components might be desirable. 
 
5.4 Allocation 
 
In the past, architectural partitioning information was only used as a guide for HLS tasks by 
including the partitions in the cost function during allocation and scheduling.  Even though the 
design was partitioned behaviorally, structurally it was still treated as a single design.  In this 
project, the goal was to create physical MCM partitions, so we viewed the partitions as distinct 
pieces of hardware represented as a separate VHDL modules.  As a result, we needed to specify 
ports for each partition and the interconnect between them.  The assignment of these ports can 
have significant affect on both the interpartition and intrapartition interconnect.  As a result, port 
assignment is a major new task during allocation of multi component systems. 
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5.5 Behavioral Descriptions 
 
On starting this project, we knew that most commercial design sites do not write abstract 
behavioral descriptions of their designs, since their design tools cannot make use of them.  
However, we did not anticipate the difficulty we would have in defining such a description such 
that a commercial designer could write one.  Our work to date has provided us with the prototype 
needed to introduce high level concepts (abstract behavioral descriptions, architectural 
partitioning, high level synthesis) in a mutually understandable language. 
 
5.6 MCM Design 
 
At the abstract behavioral level at which Dasynth does partitioning, MCMs resemble most other 
partitioned designs.  However, Raytheon personnel pointed out the importance of addressing 
varying die sizes within a single design, and power dissipation issues that do not arise in, for 
example, FPGA designs. 
 
5.7 VHDL Signals 
 
VHDL’s timing model specifies that signals change only at specific points in the description and 
that their value is present between those points.  To match this timing model during synthesis, 
signals must be stored to assure that their value does not change inappropriately.  In a partitioned 
design this means deciding in which partition to store the signal.  When partitions were only 
suggestions this was not necessary. 
 
5.8 Targeting Downstream Tools 
 
The VHDL subset accepted by downstream synthesis tools was more restrictive and varied than 
anticipated.  As a result, significantly different output modules must be used for each down 
stream tool.  It is not clear that we have sufficient control over the VHDL output using a third 
party VHDL tool.  While Compass Design Automation’s tools create nice VHDL output, it is not 
legal for all downstream tools.  As a result, a manual edit or post-processing stage is needed to 
manipulate the VHDL into its final form. 
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6.0 Conclusion 
 
A system synthesis tool allows a designer to synthesize designs onto different types of system 
implementations from a single system specification.  This may include boards of FPGAs for 
prototyping, a low cost initial design using smaller ASICs on a board, and a final high- 
performance implementation on an MCM or single chip.  System synthesis tools allow a designer 
to synthesize each different stage of a system's lifetime from early prototype to final high volume 
design as well as explore possible design trade-offs between cost and performance. 
 
In this project, DASYS has developed a first system synthesis tool, Dasynth, that takes 
behavioral system specifications and synthesizes RTL structural specifications suitable for 
current commercial synthesis tools.  Dasynth supports a design flow that partitions the design's 
behavior before high level synthesis.  This early partitioning both helps high level synthesis tools 
to meet design constraints and decomposes the synthesis problem, thereby improving the 
synthesis tool's performance. 
 


